6,050 research outputs found

    A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes

    Get PDF
    Insider threats are perhaps the most serious challenges that nuclear security systems face. All of the cases of theft of nuclear materials where the circumstances of the theft are known were perpetrated either by insiders or with the help of insiders; given that the other cases involve bulk material stolen covertly without anyone being aware the material was missing, there is every reason to believe that they were perpetrated by insiders as well. Similarly, disgruntled workers from inside nuclear facilities have perpetrated many of the known incidents of nuclear sabotage. The most recent example of which we are aware is the apparent insider sabotage of a diesel generator at the San Onofre nuclear plant in the United States in 2012; the most spectacular was an incident three decades ago in which an insider placed explosives directly on the steel pressure vessel head of a nuclear reactor and then detonated them.While many such incidents, including the two just mentioned, appear to have been intended to send a message to management, not to spread radioactivity, they highlight the immense dangers that could arise from insiders with more malevolent intent. As it turns out, insiders perpetrate a large fraction of thefts from heavily guarded non-nuclear facilities as well. Yet organizations often find it difficult to understandand protect against insider threats. Why is this the case?Part of the answer is that there are deep organizational and cognitive biases that lead managers to downplay the threats insiders pose to their nuclear facilities and operations. But another part of the answer is that those managing nuclear security often have limited information about incidents that have happened in other countries or in other industries, and the lessons that might be learned from them.The IAEA and the World Institute for Nuclear Security (WINS) produce"best practices" guides as a way of disseminating ideas and procedures that have been identified as leading to improved security. Both have produced guides on protecting against insider threats.5 But sometimes mistakes are even moreinstructive than successes.Here, we are presenting a kind of "worst practices" guide of serious mistakes made in the past regarding insider threats. While each situation is unique, and serious insider problems are relatively rare, the incidents we describe reflect issues that exist in many contexts and that every nuclear security manager should consider. Common organizational practices -- such as prioritizing production over security, failure to share information across subunits, inadequate rules or inappropriate waiving of rules, exaggerated faith in group loyalty, and excessive focus on external threats -- can be seen in many past failures to protect against insider threats

    STEMteach: Preparing the Next Generation of Mathematics and Science Teachers

    Get PDF
    With an increasing demand for individuals prepared in Science, Technology, Engineering, and Mathematics (STEM), one university responded to this call by changing its teacher preparation program. Better-prepared mathematics and science teachers have the opportunity to engage and excite students, thereby preparing and promoting more of them to enter the STEM professions. The described program is a replication of the national UTeach model that recruits content majors in mathematics and science to explore the teaching profession during a first-semester course that includes an early field experience in the elementary grades. This field experience is designed to be engaging for both the teacher education candidates and the elementary students in an effort to demonstrate the joy of teaching and to retain the candidates in the program. The ultimate goal of the program is to increase the production of quality secondary mathematics and science teachers who can transfer their own deep understanding of their content to students so that these students will be career and college ready in the STEM disciplines

    Computer program provides linear sampled- data analysis for high order systems

    Get PDF
    Computer program performs transformations in the order S-to W-to Z to allow arithmetic to be completed in the W-plane. The method is based on a direct transformation from the S-plane to the W-plane. The W-plane poles and zeros are transformed into Z-plane poles and zeros using the bilinear transformation algorithm

    Evolution and Earth's Entropy

    Full text link
    Entropy decreases on the Earth due to day/night temperature differences. This decrease exceeds the decrease in entropy on the Earth related to evolution by many orders of magnitude. Claims by creationists that science is somehow inconsistent with regard to evolution are thus show to be baseless.Comment: 2 page

    The COBE Normalization for Standard CDM

    Get PDF
    The COBE detection of CMB anisotropies provides the best way of fixing the amplitude of fluctuations on the largest scales. This normalization is usually given for an n=1 spectrum, including only the anisotropy caused by the Sachs- Wolfe effect. This is certainly not a good approximation for a model containing any reasonable amount of baryonic matter. In fact, even tilted S-W spectra are not a good fit to models like CDM. Here we normalize standard CDM (sCDM) to the 2-year COBE data, and quote the best amplitude in terms of the conventionally used measures of power. We also give normalizations for some specific variants of this standard model, and we indicate how the normalization depends on the assumed values of n, Omega_B and H_0. For sCDM we find =19.9\pm1.5uK, corresponding to sigma_8=1.34\pm0.10, with the normalization at large scales being B=(8.16\pm1.04)\times10^5 (Mpc/h)^4, and other numbers given in the Table. The measured rms temperature fluctuation smoothed on 10deg is a little low relative to this normalization. This is mainly due to the low quadrupole in the data: when the quadrupole is removed, the measured value of sigma(10) is quite consistent with the best-fitting . The use of should be preferred over sigma(10), when its value can be determined for a particular theory, since it makes full use of the data.Comment: 4 pages compressed uuencoded postscript. We have corrected an error in our analysi

    Maximum likelihood analysis of systematic errors in interferometric observations of the cosmic microwave background

    Get PDF
    We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that do not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately recover the underlying B-modes for r=0.01 at 28<l<384, Gaussian-distributed pointing errors must be controlled to 0.7^\circ rms for an interferometer with an antenna configuration similar to QUBIC, in agreement with analytical estimates. Only the statistical uncertainty for 28<l<88 would be changed at ~10% level. With the same instrumental configuration, we find the pointing errors would slightly bias the 2-\sigma upper limit of the tensor-to-scalar ratio r by ~10%. We also show that the impact of pointing errors on the TB and EB measurements is negligibly small.Comment: 10 pages, 4 figures, accepted for publication in ApJS. Includes improvements in clarity of presentation and Fig.4 added, in response to refere

    The COVID Games: Resilience in the Shadow of a Global Pandemic

    Get PDF
    This paper explores the student experience in North Texas through current research and interviews with students, parents, educators, and nonprofit leaders who leaned into the work of meeting basic needs in an extremely challenging time. The chapter begins with data on COVID-19 infection rates in the community and publicly available data from school districts and Texas Education Agency on academic achievement, grounding the chapter in quantitative facts. Next, findings from interviews provide context on the human impact of the pandemic. Parents and educators share their perspectives on the challenges students faced, unpacking what they wish they had known early in the pandemic, the strengths they saw in the children as they navigated learning in an unusual situation, and their worries and hopes for the future. Nonprofit leaders from organizations addressing children’s mental health, homelessness prevention, food insecurity, and out-of-classroom education share how their work changed during the pandemic, the importance of supporting students’ basic needs for academic and social-emotional development, and how they saw children respond to the pandemic. Finally, students share their own perspectives on learning during COVID and the lessons they hope decision-makers learn to transform the educational experience

    The Right to Development: Implications for International Economic Law

    Get PDF
    • …
    corecore